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This paper discusses concepts of stochastic resonance and noise-induced synchronization in a bistable
oscillator subject to both periodic signal and noise. We demonstrate that stochastic resonance is not directly
correlated with the matching of the signal frequency and the switching rate. The phenomena of stochastic
resonance and noise-induced synchronization are the limiting cases of noise-induced transitions, and the spec-
tral response heavily depends on the input signal-to-noise ratio. The lower and upper bounds of noise intensity
allowing synchronization are found as functions of the system’s parameters.
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I. INTRODUCTION

The concept of stochastic resonance (SR) has been intro-
duced to describe a paradoxical phenomenon in multistable
systems excited by a weak periodic signal and noise: an in-
crease in the input noise can result, under certain conditions,
in an improvement of the output signal-to-noise ratio (SNR)
[1,2]. The simplest mathematical model considers the first-
order diffusion in a periodically changing bistable potential
landscape. The system’s dynamics has been taken to be dis-
crete: a particle exhibits instant random jumps between the
bottoms of the potential wells [1]. A weak signal causes the
positions of the potential’s minima and maximum to oscil-
late, and interwell jumps seem to occur with some degree of
coherence with the signal. The noise intensity can be chosen
in such a way that the system’s sensitivity and ability to
amplify the weak input would be maximal.

Recent theoretical advances in this field [3] are based on
large deviation theory [4]. It has been proved [4] that a par-
ticle in a bistable potential rests near the bottom of the
deeper well with probability close to 1, but with eventual
noise-induced excursions to the other well. This results in the
above-mentioned discrete model. The rudiments of similar
reasonings can be found in [1,2].

The effect of a periodic signal is similar to tilting of the
potential. It seems likely for a particle to jump from a higher
well to a deeper well at the extrema of the tilting cycles. The
existing experimental and simulation results [5] are in a
fairly good agreement with this hypothesis. This leads to a
commonly used interpretation of SR as a noise-induced syn-
chronization phenomenon. However, synchronization of hop-
ping and signal is not implicit in SR theory. By this theory,
the output spectrum is a superposition of a flat wide-band
spectrum of the Lorentzian type and a discrete spectrum
with a peak at the signal frequency; no coherence between
the interwell switching rate and the signal is implicit in this
representation.

In this paper we demonstrate that the phenomena of sto-
chastic resonance and noise-induced synchronization are dif-
ferent but not contradictory. SR theory considers weakly
modulated systems, with a small input SNR. The signal is
insufficient to lock the hopping process, so that random hop-
ping is dominant, and a wide-band component of the spec-
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trum is substantial. As the relative level of the signal against
noise is increasing, the wide-band portion of the spectrum
decreases, and locking of the hopping process to a weak
signal becomes visible. The boundary between the domains
of stochastic resonance and synchronization is a function of
the input SNR.

In the majority of the previous studies, SR has been stud-
ied on the base of the first-order (overdamped) model, in
which the inertia force is ignored. The hopping dynamics has
been reduced to a simple two-state Poissonian model with
the Kramers switching rate. We consider a more realistic
model of a bistable oscillator

X+efi+Vi(rx)=eoW(r), (1)
where

V(r,x)=U(x) —eyxsint, 7=wy, (2)

0<e<1 is a small parameter of the system, U(x) is a sym-
metric double-well potential function, W(r) is a zero-mean
Gaussian white noise of unit intensity; the overdot denotes
differentiation with respect to time ¢, the prime denotes par-
tial differentiation with respect to x.

Different physical mechanisms of the SNR increase in the
overdamped and oscillatory model have been analyzed in
[6]. The overdamped model has been studied under the com-
monly used assumptions of the hopping dynamics. In the
analysis of system (1), the signal frequency w, has been pre-
sumed close to the system’s eigenfrequency and much higher
than the rate of escape from the potential well. Under this
assumption, the SNR improvement is not associated with
interwell hopping. Despite the presence of weak noise, the
signal enhancement due to an agreement between the sig-
nal’s and system’s frequencies can be interpreted as the
classic resonance effect in system (1) [7].

In this paper we investigate the signal enhancement asso-
ciated with noise-induced interwell jumps in system (1). This
allows us to compare similar effects in the first-order and
second-order models.

The asymptotic analysis of system (1) has been performed
by the stochastic averaging method [8]. Omitting the proof,
in Sec. II we recall the expressions of the mean escape time
and the mean escape rate for the second-order oscillator (1).
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In Sec. IIT we compare the SR curves and the optimum noise
values for the first-order and second-order models. We show
that the two-state model with the Kramers switching rate is
convenient for the analysis of noise-induced transitions in
system (1). In Sec. IV we analyze the effect of the input
SNR. We demonstrate that SR can occur in a weakly-
modulated system with a small input SNR. If the input SNR
is large enough, a weak signal entails synchronization of
noise-induced transitions. The upper and lower bounds of
synchronization are derived in Sec. I'V.

II. ESCAPE RATE AND THE STATE PROBABILITY
FOR THE SECOND-ORDER MODEL

The main ingredients of SR theory are the escape time
law and the probability of the system’s state in the domain of
attraction of the unperturbed fixed point. The asymptotic es-
timates of the statistical quantities have been obtained by the
stochastic averaging method [8]. In this item, we recall the
main results of [8].

Consider the nonmodulated system,

X+eBi+U'(x)=eaW(r), (3)

where U(x) is a continuous and twice continuously differen-
tiable even function having the saddle (maximum) point
x0=0, U(0)=0, and two minima x,=a>0 and x_=-a<0
such that U(a)=U(—a) <0. The point x=0 corresponds to the
saddle point, the points x,=a>0 and x_=—a <0 correspond
to the stable centers of the conservative counterpart of sys-
tem (3) as e=0. Here and below the indices + and — are
related to the right and left half-planes, associated with the
centers x,=a>0 and x_=-a <0, respectively. The index *
correspond to the entities defined in both half-planes.

In the phase portrait of the conservative oscillator the do-
mains of attractions Q, of the centers x, are enclosed by
the loops of the homoclinic separatrix with the saddle point
xp=0 [7]. Let system (3) be within Q. at the initial moment
to=0. If perturbation is weak, escape time 7™ is interpreted as
the time needed to reach the separatrix by the process start-
ing at a point within Q.. The requisite statistical parameters
are the mean escape time @*=ET* and the mean escape rate

*=1/0%. Here and below the symbol E denotes expectation
of the random variable. In the symmetric system (3) we have
T==T°, O*=0°.

It has been shown [4] that the asymptotic estimate of es-
cape time 7° as € —0 is independent of the initial state. It
can be calculated as the time needed to reach the potential
barrier U(0)=0 by a particle starting at the bottom point +a.
Asymptotic approximations of the mean escape time and es-
cape rate from the points +a through the threshold U(0) are

[8]
0° — ¢ =K lexp(2BAU/ed?),

e—0

No=1/6° = K exp(- 2BAU/e0?), (4)

where K=28°w,l,/0?, I is the action integral calculated
along the loop of the homoclinic separatrix [7], AU=U(0)
~U(xa), wo=[U"(za)]">.
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Finally, we compare A, with the Kramers rate « calcu-
lated for the first-order model. The formal derivation of the
Kramers rate has been given for the dimensionless system, in
which ¥=0,e8=1, eo=vD [9]. The obvious scaling yields

ay= Kk exp(—=2BAU/sd?), (5)

where k=wyw,/(\2meB), w,=|U"(0)|"2. Since the factor
is independent of o, the rate « is less sensitive to the noise
intensity than \,. However, we have In A\j—1n oy as e —0
on a commonly used logarithmic scale.

Now we consider the modulated system (1), (2). We as-
sume that the signal frequency w;, satisfies the condition

In(l/wy) — kle, k>0, ase—0. (6)

Assumption (6) implies that the signal period is longer
than any time scale of the intrawell dynamics. This allows
considering the slow dimensionless time 7=w as a fixed
parameter [1-5]. Let xo(7) and x.(7) be the maximum and
the minima of the potential V(7,x) found as the functions of
the parameter 7. The modulated escape rates out of the states
x,(7) are [8]
v=2Bayld>, (7)

N*(7) = \j(7)exp(F vsin 7),
where

—2BAV*(7)

2 s
)xi(T):Kt(T)exp[ 3 M'

], K*(7) = o
(8)

VE(1) = V(7,x0(7) = V(7,x.(7), (1) =[V"(7,x(1)]"*, F(7)
are the action integrals calculated along the slowly pulsing
loops of the separatrix. The parameter v is a measure of the
input SNR.

It has been proved [8] that \j(7)=\o(1£ep sin 7+&%--+),
p~avy/AU. Since the normalized depth of modulation
eya<< AU, one can write

N (1) =Npexp(Fvsin7) ase— 0. 9)

The Fourier decomposition of the periodic rate (9) is

o0

NP =No| o) +2> (= 1)L (£v)sinn7 |,  (10)

n=1

where I, is the modified Bessel function of order n [10].
From formulas (9), (10) it follows that the precise form of
the time-dependent parameters in insubstantial for the
asymptotic analysis.

We define the state probability P*(z|t,, x) as the probabil-
ity of the system being within the domain Q, or Q_ at a
moment ¢ after random walks between the wells, provided
the process starts at a given point y=a, or y=-a. Large
deviation theory allows reducing the hopping dynamics in
system (3) to a simple Poissonian switching model. In this
model, a particle may be either at +a or at —a, the passages
between these positions are instant. This yields the Poisso-
nian state  probability  P*(t|t,, x)=P[x(t) £a|x(t)) = x]
governed by the rate equation [9]
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P'=—P =—[\"(D+ N (DIP +\ (), P +P =1,
(11)

with the boundary conditions

P*(to|t0, x) = Plx(to) = alx] = 8,

P~(1,

tO’X) = P[X(I()) =- a|X] = 5—0,)(’

where 8, ,={1, if x=a:0, if y=—a} is the Kronecker
symbol.

III. STOCHASTIC RESONANCE IN A WEAKLY
MODULATED SYSTEM

Following [1], we introduce the main definitions and no-
tations of SR theory. The task is to compare the results for
the overdamped Kramers model and second-order oscillatory
model and to reveal the discrepancies in the commonly used
description of SR effect.

The system is said to be weakly modulated if the input
SNR v< 1. In this case we find from (9), (10)

N(D=N(1 Fwsing, v<l. (12)

The output SNR is defined through the averaged power
spectrum

T

l o0
S(Q) = lim — dtf R(t,5)cos Qsds, (13)
T —o0

T—»ocT_

where Ry(,s) is the correlation function of the steady-state
portion of the two-state Poissonian process

Ro(t,5) = lim E[x(2)x(s)|ty, x]
= a’[P*(1|s,a)P*(s) - P*(t|s,— a)P(s)
- P (ts,@)P*(s) + P~ (t|s,a)P(s)]. (14)

The state probability P*(¢) is defined as the steady-state
solution of the rate equation (11) as 7,— —o°, that is

N (D) _ltwsin7
2 2
Now, by formulas (14) and (15),

P=(1) = (15)

1
Ro(s) = a’exp(—2\gs) + E(a v)2cos wys = R, (s) + Ry(s).

(16)

Formula (16) is simpler than its counterpart in [1]. It is
obtained by noting that the terms of order v? are substantial
only for the periodic component R (s) and can be ignored
in the aperiodic component R,(s). The associated power
spectrum is the superposition of the continuous noise
spectrum S,(€)) and the discrete spectrum S,({)), namely

S(Q) =5,(Q) + 5,9,

4612}\0

S, (Q) = ,
) 4N+ 02

(17)
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5,(Q) = +2m(av) [8(Q - »,) + JQ + w,)].

It is easy to see that there is no correlation between the
form of the flat spectrum S,({)) and the signal frequency w;.
Signal-to-noise ratio at the frequency w; is defined
2m(av)? B 24)\6 +

Siw) 2Ny (18)

(o) =
Signal-to-noise ratio for the slow signal with the

frequency w,<<2\,,
(o) =2mP\,, (19)

is independent of the frequency w,. Using the expressions for
Ao and v, we obtain

2. \2 _
A ya) exp{ 2'BAU} (20)

(o) = Sﬁlswo( o Jp)

The maximum of (o) is defined by the equation
dn(o)/do=0. The direct calculation gives the optimal noise
intensity

o =& BAUI3). (21)

We have demonstrated that there is no direct correlation
between the signal frequency and the switching rate, and
optimum tuning is independent of the signal frequency.

Compare functions (20) and (21) with their counterparts
based on the Kramers rate (5). Using [1], we obtain after the
proper scaling

[~ 223
1’2 "~ - 2 AU
\Zwgwia’p exp[ B } (22)

7o) = ot eo?

The optimal noise intensity is defined by the equation
dn*(0)/do=0. The result is

o= (e7'BAU)? = 1,20". (23)

On the logarithmic scale we have In 7(o) —1n 7%(o) as
&£—0. Thus the curves (o) and 7*(o) and the optimal val-
ues o and o% are close enough from the modeling and
analysis viewpoints. This implies that a two-state model with
the Kramers escape rate is convenient for describing the SR
effect in a fairly general class of bistable systems.

The theory predicts 7(o)—0 for very large and very
low input noise, and yet it is clear from Fig. 9 in [1] that
n(o) — as o— 0. This effect can be easily understood. The
signal alone is insufficient to induce transitions across the
potential barrier but the weak noise helps to bring about such
transitions. If noise is too small, the escape rate is close to
zero, that is motion is confined near the bottom of a single
well. In this case the system dynamics is quasilinear, and any
increase in the input noise would result in a proportional
decrease in the output SNR. As the input noise increases, the
hopping dynamic becomes dominant. Nonlinear interaction
between signal and noise can, under certain conditions, result
in an improvement of the output SNR as the input noise
increases. A further increase in the input noise suppresses the
signal effect on the system, and the output SNR decreases. If
o is large enough, irregular hopping is transformed into ran-
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dom oscillation overlapping both stable positions. Hence,
SNR may pass through a maximum at an optimal level of
noise. Stochastic resonance can be interpreted as a nonlinear
effect arising due to the passage from oscillatory to noise-
induced hopping motion. In particular, this implies that the
SNR curve cannot be extrapolated to the margins o — 0 and
o— o, as it has been done in a number of issues (see [2] for
references).

IV. NOISE-INDUCED SYNCHRONIZATION IN A WEAKLY
PERTURBED SYSTEM

A. Synchronized transitions

The system is said to be weakly perturbed if the input
SNR »>1. In this case the mean escape rate can be found
from the asymptotic representation of the modified Bessel
functions [10]

L(v) ~ Qav) 21 + 0(v)] (24)

for all n=1, v>1. From formulas (10) and (24) we find

N(7) = ZO(V)ll +2>, (= 1)sin nrj| ,

n=1

x-(T)=10(V)[1 +2> sinm'], (25)
n=1

where [(v)=\o(27v)"%¢”. Summing series (25) as distribu-

tions, we obtain

N (D) = (1) D 8(r— 2k = 1)7),
n=1

N (D) =1y(v) >, 8(7-2km), (26)
n=1

where &(7) is Dirac’s & function. From (24), (26) we deduce
that, with probability close to 1, a particle rests at the bottom
of the deepest well until the wells switch, and the bottom of
the well takes up the highest position. The moments of es-
cape from the right (+) and left (=) wells are, respectively

i=Q2k- Do, f=2kmlo, k=12,... (27)

It follows from (24), (26), (27) that hopping can be inter-
preted as a series of 27/ w,—periodic switching between the

states +a, that is
<t<t; f<t<tl,.

(28)

x(t)=-a, x(t)=a,

Formulas (25)—(28) describe the phenomenon of noise-
induced synchronization. Interwell jumps are induced by
noise but motion becomes “captured” and sustained by a
relatively strong signal. The hopping frequency coincides
with the signal frequency.

Relations (11) and (25) imply that the steady-state
probability P=(¢) can be approximated as follows:
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P*(z) ={1, if sin wg¢ > 0;0, if sin wy < 0},

P(1) ={0, if sin wys > 0;1, if sinwg <0}, (29)

Hence a particle, escaped eventually from a well, is
captured into the deepest well with the probability close to 1
and then continues moving by law (28).

Actually, we present an idealized depiction of the
synchronized transitions. Noise induces an eventual excur-
sion from a deeper well to a higher well, or escapes from a
higher well at the moments different from 7. Due to these
random walks, the spectrum of hopping is continuous, with
sharp peaks at the signal harmonics. The intensity of these
random walks and the portion of the wide-band spectrum
depend on the relationship between the input signal and
noise.

B. Upper and lower bounds of noise-induced synchronization

If v<1, then interwell jumps may occur at random
moments during each semicycle of modulation, and the sig-
nal effect is almost negligible. As the relative level of
the signal against noise is increasing, the wide-band portion
of the spectrum decreases, and locking of the hopping
process to a weak signal becomes visible. This yields the
upper bound of the noise intensity allowing synchronization
v=2Baylo*>1, or

aR2B<ay. (30)

Let T,=27/ w, be the signal period. If escape time from a
well is T° <T,/2=m/ w,, the process has enough time to es-
cape from the higher well and to enter the lower well until
the bottom of the well where it starts is in the higher posi-
tion. In the opposite case 7°>T,/2=m/ w,, the process does
not have enough time to escape until the bottom of the well
is in the higher position, so it remains confined within a
single well with high probability. Hence only below the criti-
cal level T®=1/ w, the periodic hopping (28) can occur. This
entails the lower bound of synchronization 7° </ w;.

In principal, 7° is a random parameter. However, with
probability close to 1 we have T°— O°=ET® as e —0 [4]. In
turn, from formula (4) we have ©°— ¢ as £ — 0. This yields
the deterministic estimate 6° <7/ w,, or, by (4),

128> AU/e In(1/w,)]. (31)
Assumption (6) implies In(1/w,) —k/& as €—0, that is
123> AUIk. (32)

Inequalities (30) and (32) define the interval of noise-
induced synchronization

AUk < ?2B < ya. (33)

V. CONCLUSIONS

In this paper we have shown that the phenomena of
stochastic resonance and noise-induced synchronization are
different but not contradictory. These effects can be inter-
preted as the limit cases of interwell transitions modulated by
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a weak signal. Stochastic resonance is not directly correlated
with the matching of the signal frequency and the switching
rate. The boundary between the domains of stochastic reso-
nance and synchronization depends on the input signal-to-
noise ratio. If the signal is weak compared to noise, the hop-
ping dynamics is random, with a weak periodic component,
and, under certain conditions, stochastic resonance can
appear. While the relative signal intensity increases, the
wide-band portion of the spectrum decreases, and, in the
limit, a nearly periodic hopping occurs. Nearly periodic hop-
ping induced by noise but locked to a periodic signal is
interpreted as noise-induced synchronization. We have
deduced the upper and lower bounds of the noise intensity,
allowing noise-induced synchronization.

Large deviations theory reduces the hopping dynamics in
a bistable system to a simple Poissonian switching model.
This model depends on the system’s structure only through
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the mean escape rate of the original system. We have shown
that the Kramers rate of the first-order system is less sensi-
tive to the noise intensity than the escape rate of the second-
order oscillator but both parameters are qualitatively similar.
This implies that a simple two-state Poissonian model, based
on the Kramers escape rate, gives a fairly good approxima-
tion in the analysis of a general class of bistable oscillators.
This deduction is confirmed by the similarity of the SR
curves for the first-order and second-order models.
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